Cereplast

Bio Plastics Markets and Products

What is the fit?

Bob Williams

May 17, 2010

Agenda

- Overview of Bio-Plastics
- Industry Terms and Definitions
- Certifications
- Demand Drivers for Bio-Plastics
- Market Opportunities
- Major Players in Bio-plastics
- Bio-Plastics Properties
- Bio-Plastic Part Design
- Bio-Plastic Processing

Overview of Bio-Plastics

- > The bio- plastics industry is an emerging industry which has been around for about 15 years.
- Currently, bio-plastics manufacturers globally can produce less than 500,000,000 pounds annually.
- The growth rate for bio-plastics is projected at over 20% per year to over 1.2 MM lbs by 2012
- Bio-plastics were primarily used in the food industry but are now being utilized in a variety of new industries.
- Bio-plastics are produced from both renewable resources and synthetic polymers.

Not all bio-plastics are bio-based

Why Bio-Plastics?

To manage the carbon footprint of more than 1 trillion pounds (1,000,000,000,000!) of traditional plastic resins created every year

The Time is Right for Bio-Plastics

- Bio-Plastics are an answer to the quest for sustainability in reducing our dependence on fossil fuels.
- Bio-Plastics are now affordable or competitively priced with fossil fuel based plastics.

Industry Terms and Definitions

- Bio-based: An organic material in which carbon is derived from a renewable resource via biological process. Bio-based materials include all plant and animal mass derived from CO2 recently fixed via photosynthesis, per definition of renewable resource. (ASTM)
- Biodegradable Plastic: A plastic in which the degradation results from the action of neutral micro-organisms such bacteria, fungi and algae (ASTM).
- Compostable Plastic: A plastic that degrades by biological processes during composting to yield CO2, water, inorganic compounds and biomass at a rate consistent with other known compostable materials and leaves no visible, distinguishable or toxic residues. (ASTM)

Industry Terms and Definitions

- Renewable: A commodity or resource that is inexhaustible or replaceable by new growth.
- Sustainable: A product that "meets the needs of the present without compromising the ability of future generations to meet their own needs." (Bruntland Commission)
- ASTM D6400: Standard specification for compostable plastics. The test is based on the compostability of products in an industrial compost facility.
- ASTM 6866: Standard test method for determining the biobased content of natural range materials using radiocarbon and isotope ratio mass spectrometry analysis.

Certifications

- BIODEGRADABLE-COMPOSTABLE
 - > ASTM D 6400- BPI compliance
- BIOBASED CONTENT
 - > ASTM D 6866-04a (Radio-Carbon process)

- > GMO ANALYSIS
 - > P.C.R.Q.
- > FDA COMPLIANCE

Certifications

- BPI seal of compostability
- Biodegradable Products Institute (www.bpiworld.org)

European Bioplastics Association (<u>www.european-bioplastics.org</u>)

> Specifications: ASTM 6400 D99 and ASTM 6868

American Society for Testing and Materials worldwide source for technical standards

Managing The Carbon Cycle "Cradle to Cradle"

Long-Term Trends Driving Bioplastics Growth

- Rising, Volatile Oil Prices and Energy Security Concerns
 - Approximately 10% of oil is converted into plastics

Environmental Concerns

- Overfilling of landfills and degradability of plastic waste
- ➤ Health concerns about the use of certain plastics in food and human contact
- Lack of recycling of traditional petrochemical plastics
 - > EPA estimates that less than 6% of waste plastic is currently recycled
 - Managing the carbon cycle

> Favorable Regulatory Initiatives

- Federal government announced a major policy directive that designates products made from bio-based plastics as a preferred purchasing item
- Petroleum-based plastic bans / taxes
- > Improving Performance and Competitiveness of Bioplastic Resins

Bioplastics will rapidly displace petroleum-based plastics as commercially feasible alternatives are offered to consumers

Bioplastics Market Sizing

- BCC Research estimates that the global market for biodegradable plastics reached 541 million pounds in 2009 and is expected to reach 1.2 billion pounds by 2012
- Biopropylene™ Hybrid Resin Opportunity
 - Global polypropylene market is greater than 100 billion pounds
 - ➤ 1% penetration represents more than a \$1 billion market opportunity

Major Players in Bio-Plastics

Polymer Developers

Bio-Based

Synthetic

Resin Developers

Major Players in Bio-Plastics

> Who?	Material
--------	----------

> Tianan PHBV

NatureWorks

Metabolix
PHA

> BASF Ecoflex

Novamont
Mater-Bi

> Biomer PHA

> Dupont Biomax

Plantic
Thermoplastic starch

Bio-Plastic Properties

Take market share from traditional petroleum-based plastic products through product attributes, predictable and competitive pricing, forced demand (legislation), and increased end-user demand.

Bio-Plastic resins can address a large portion of the plastic industry

Bio-Plastic Properties

- Basic material Data sheet properties are in line with traditional commodity plastics but not the same.
 - > Data Sheet properties should be used for material comparison,
 - Data sheet properties do not predict application performance.
- One to One Conversion is not always possible.
 - Bio-materials must stand on their own.
- Force fit applications can have issues.
- > Traditional materials have 50+ years of development.

Bio-Plastic Product Offering

Compostables Resins (Single-use applications)

100% renewable content

100% biodegradable and compostable

Can be used in all major converter processes

Applications: Foodservice ware and packaging

Hybrid Resins (Durable applications)

> 50% renewable content

Reduced petroleum content

Can be used in all major converter processes

Applications: Automotive, consumer goods, electronics, toys

Bio-Plastic Process and Design

- Basic material properties are tested and compared to traditional polymers.
 - > Parts are processed and compared with traditional polymer parts
- Proprietary bioplastic resin blends are being manufactured to meet the specific client needs
 - > Priced competitively with traditional petroleum based alternatives
- Versatile manufacturing operations
 - > Utilize conventional processing equipment
 - > Customers able to use traditional fabrication equipment
 - > No additional capital investment required

Bio-Plastic vs. Traditional Plastic

Cereplast Composition Resin Certified Biodegradable Compostable	Bio-based	Density greater than 1.25	Runs on equipment at lower temperatures	Heat deflection temperature of 120-130F
Cereplast Hybrid Resin Renewable & Sustainal	50% Bio-based Content	Density of 1.04	Runs on equipment at lower temperatures	Heat deflection temperature of 175- 200F
Conventional Petroleum Plastic	0% Bio-based Content	Density between 0.9- 0.99	Runs on equipment at higher processing temperatures	Heat deflection temperature above 200F

Cereplast Compostables™ Resins

- Made from renewable resources
 - ➢ Blends of biopolymers and native plant starches (corn, wheat, tapioca and potato)
- Target markets include foodservice, packaging and single use applications
- Ecologically sound substitutes
 - > Replace nearly 100% of the petroleum based products
 - ➤ Used in all major converting processes such as thermoforming, injection molding, blow molding and extrusions
- > Certified as biodegradable and compostable in the United States and Europe

Bio-Plastic Process Options

Process

Applications

EXTRUSION-THERMOFORMING

INJECTION MOLDING

EXTRUSION BLOW MOLDING

BLOWN FILM

PROFILE EXTRUSION

EXTRUSION COATING

Plates, containers, packaging, gift cards, films

Utensils, cups, containers, scoops

Bottles, containers

Food packaging wrap, bags, films

Straws, stirrers, netting

Paper coatings

Bio-Plastic Material Developments

- > Higher heat
- > Foam
- > Lower density
- > Improved Impact

Highlights

- Long-term global trends favor non-petroleum-based solutions
- Large addressable market
- Proprietary and patented formulations and resinmanufacturing expertise
- Close relationships with industry leading customers
- > Scalable manufacturing platform

Summary

- ➤ Bio-plastics are at the early stage of a long-term irreversible growth/penetration cycle
- The bioplastics sector is poised for near term significant growth
- ➤ Bio-Plastic companies are investing heavily to meet the demand from consumers for sustainable resin solutions

